
[09:34 17/5/2010 Bioinformatics-btq202.tex] Page: i124 i124–i131

BIOINFORMATICS Vol. 26 ISMB 2010, pages i124–i131
doi:10.1093/bioinformatics/btq202

Phylogenetic networks do not need to be complex: using fewer
reticulations to represent conflicting clusters
Leo van Iersel1,∗, Steven Kelk2, Regula Rupp3 and Daniel Huson3

1Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch, New Zealand,
2Centrum voor Wiskunde en Informatica (CWI), Life Sciences, P.O. Box 94079, 1090 GB Amsterdam,
The Netherlands and 3Center for Bioinformatics ZBIT, Tübingen University, Sand 14, 72076 Tübingen, Germany

ABSTRACT

Phylogenetic trees are widely used to display estimates of how
groups of species are evolved. Each phylogenetic tree can be seen
as a collection of clusters, subgroups of the species that evolved
from a common ancestor. When phylogenetic trees are obtained
for several datasets (e.g. for different genes), then their clusters
are often contradicting. Consequently, the set of all clusters of
such a dataset cannot be combined into a single phylogenetic tree.
Phylogenetic networks are a generalization of phylogenetic trees
that can be used to display more complex evolutionary histories,
including reticulate events, such as hybridizations, recombinations
and horizontal gene transfers. Here, we present the new CASS

algorithm that can combine any set of clusters into a phylogenetic
network. We show that the networks constructed by CASS are usually
simpler than networks constructed by other available methods.
Moreover, we show that CASS is guaranteed to produce a network
with at most two reticulations per biconnected component, whenever
such a network exists. We have implemented CASS and integrated it
into the freely available Dendroscope software.
Contact: l.j.j.v.iersel@gmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Phylogenetics studies the reconstruction of evolutionary histories
from genetic data of currently living organisms. A (rooted)
phylogenetic tree is a representation of such an evolutionary history
in which species evolve by mutation and speciation. The leaves
of the tree represent the species under consideration and the root
of the tree represents their most recent common ancestor. Each
internal node represents a speciation: 1 species splits into several
new species. Thus, mathematically speaking, such a node has
indegree 1 and outdegree at least 2. In recent years, a lot of
work has been done on developing methods for computing (rooted)
phylogenetic networks (Gambette, 2009; Gusfield et al., 2007b;
D.H.Huson et al., submitted for publication; Nakleh, 2009; Semple,
2007), which form a generalization of phylogenetic trees. Next to
nodes representing speciation, rooted phylogenetic networks can
also contain reticulations: nodes with indegree at least 2. Such
nodes can be used to represent the recombinations, hybridizations
or horizontal gene transfers, depending on the biological context.
In addition, phylogenetic networks can also be interpreted in a
more abstract sense, as a visualization of contradictory phylogenetic
information in a single diagram.

∗To whom correspondence should be addressed.

Suppose we wish to investigate the evolution of a set X of taxa
(e.g. species or strains). Each edge of a rooted phylogenetic tree
represents a cluster: a proper subset of the taxon set X . In more
detail, an edge (u,v) represents the cluster containing those taxa that
are descendants of v. Each phylogenetic tree T is uniquely defined
by the set of clusters represented by T . Phylogenetic networks also
represent clusters. Each of their edges represents one ‘hardwired’
and at least one ‘softwired’ cluster. An edge (u,v) of a phylogenetic
network represents a cluster C ⊂X in the hardwired sense if C
equals the set of taxa that are descendants of v. Furthermore, (u,v)
represents C in the softwired sense if C equals the set of all taxa
that can be reached from v when, for each reticulation r, exactly
one incoming edge of r is ‘switched on’ and the other incoming
edges of r are ‘switched off’. An equivalent definition states that a
phylogenetic network N represents a cluster C in the softwired sense
if there exists a tree T that is displayed by N (formally defined below)
and represents C. In this article, we will always use ‘represent’
in the softwired sense. It is usually the clusters in a tree that are
of more interest, and less the actual trees themselves, as clusters
represent putative monophyletic groups of related species. For a
complete introduction to clusters see D.H.Huson et al. (submitted
for publication).

In phylogenetic analysis, it is common to compute phylogenetic
trees for more than one dataset. For example, a phylogenetic tree
can be constructed for each gene separately, or several phylogenetic
trees can be constructed using different methods. To accurately
reconstruct the evolutionary history of all considered taxa, one
would preferably like to use the set C of all clusters represented by at
least one of the constructed phylogenetic trees. In general, however,
some of the clusters of the different trees will be incompatible, which
means that there will be no single phylogenetic tree representing C.
Therefore, several recent publications have studied the construction
of a phylogenetic network representing C. Huson and Rupp (2008)
describe how a phylogenetic network can be constructed that
represents C in the hardwired sense (a cluster network). A network is
a galled network if it contains no path between two reticulations that
is contained in a single biconnected component (a maximal subgraph
that cannot be disconnected by removing a single node, see Fig. 1).
Huson and Klöpper (2007) and Huson et al. (2009) describe an
algorithm for constructing a galled network representing C in the
softwired sense.

Related literature describes the construction of phylogenetic
networks from phylogenetic trees or triplets (phylogenetic trees
on three taxa). A tree or triplet T is displayed by a network N
if there is a subgraph T ′ of N that is a subdivision of T (i.e. T ′
can be obtained from T by replacing edges by directed paths).
Computing the minimum number of reticulation required in a

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at C
W

I on F
ebruary 17, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

http://creativecommons.org/licenses/
http://bioinformatics.oxfordjournals.org/

[09:34 17/5/2010 Bioinformatics-btq202.tex] Page: i125 i124–i131

Simpler phylogenetic networks from clusters

a b c d e f g h i j k l

Fig. 1. Example of a phylogenetic network with five reticulations. The
encircled subgraphs form its biconnected components. This binary network
is a level-2 network since each biconnected component contains at most two
reticulations.

phylogenetic network displaying two input trees (on the same set
of taxa) was shown to be APX-hard by Bordewich and Semple
(2007). Bordewich et al. (2007) proposed an exact exponential-time
algorithm for this problem and Linz and Semple (2009) showed
that it is fixed parameter tractable (FPT), if parameterized by the
minimum number of reticulations. The downside of these algorithms
is that they are very rigid in the sense that one generally needs very
complex networks in order to display the given trees.

The level of a binary network is the maximum number of
reticulations in a biconnected component,1 and thus provides a
measure of network complexity. Given an arbitrary number of trees
on the same set of taxa, Huynh et al. (2005) describe a polynomial-
time algorithm that constructs a level-1 phylogenetic network that
displays all trees and has a minimum number of reticulations, if
such a network exists (which is unlikely in practice). Given a triplet
for each combination of three taxa, Jansson and coworkers (Jansson
and Sung, 2006; Jansson et al., 2006) and give a polynomial-time
algorithm that constructs a level-1 network displaying all triplets, if
such a network exists. The algorithm by van Iersel and Kelk (2009)
can be used to find such a network that also minimizes the number of
reticulations. These results have later been extended to level-2 (van
Iersel and Kelk, 2009; van Iersel et al., 2009a) and more recently
to level-k, for all k ∈N (To and Habib, 2009). Although this work
on triplets is theoretically interesting, it has the practical drawback
that biologists do not work with triplets (but rather with trees or
clusters) and that it is rather difficult to intuitively convey what it
means for a triplet to be ‘in’ a network. An additional drawback is
that these triplet algorithms need at least one triplet in the input for
each combination of three taxa, while some triplets might be difficult
to derive correctly. If, for example, one induces triplets from a set of
trees, then this is likely not to give you a triplet for each combination
of three taxa, if one or more input trees are not fully resolved or if
some input trees do not have exactly the same set of taxa.

In this article, we present the algorithm Cass,2 which takes any
set C of clusters as input and constructs a phylogenetic network that
represents C (in the softwired sense). Furthermore, the algorithm
aims at minimizing the level of the constructed network and in
this sense Cass is the first algorithm to combine the flexibility
of clusters with the power of level minimization. Cass constructs
a phylogenetic tree representing C whenever such a tree exists.

1In Section 2, we generalize the notion of level to non-binary networks.
2Named after the Cass Field Station in New Zealand.

e

h

d

b c i f

g

a

(a)

a

g

d

c

f

b

e

i

h

(b)

Fig. 2. (a) The output of the galled network algorithm (Huson et al., 2009)
for C={{a,b,f ,g,i}, {a,b,c,f ,g,i}, {a,b,f ,i}, {b,c,f ,i}, {c,d,e,h}, {d,e,h},
{b,c,f ,h,i}, {b,c,d,f ,h,i}, {b,c,i}, {a,g}, {b,i}, {c,i}, {d,h}} and (b) the
network constructed by Cass for the same input.

Moreover, we prove that Cass constructs a level-1 or level-2
network representing C whenever there exists a level-1 or level-2
network representing C, respectively. Experimental results show that
also when no level-2 network representing C exists, Cass usually
constructs a network with a significantly lower level and lower
number of reticulations compared with other algorithms. In fact,
we conjecture that similar arguments as in our proof for level-2
can be used to show that Cass always constructs a level-k network
with minimum k. We prove a decomposition theorem for level-k
networks that supports this conjecture. Finally, we prove that Cass
runs in polynomial time if the level of the output network is bounded
by a constant.

We have implemented Cass and added it to our popular tree-
drawing program Dendroscope (Huson et al., 2007), where it can
be used as an alternative for the cluster network (Huson and
Rupp, 2008) and galled network (Huson et al., 2009) algorithms.
Experiments show that, although Cass needs more time than these
other algorithms, it constructs a simpler network representing the
same set of clusters. For example, Figure 2a shows a set of clusters
and the galled network with four reticulations constructed by the
algorithm in Huson et al. (2009). However, for this dataset also a
level-2 network with two reticulations exists, and Cass can be used
to find this network, see Figure 2b. Dendroscope now combines
the powers of Cass and the two previously existing algorithms for
constructing galled- and cluster networks.

2 LEVEL-K NETWORKS AND CLUSTERS
Consider a set X of taxa. A rooted (phylogenetic) network (on X)
is a directed acyclic graph with a single root and leaves bijectively
labeled by X . The indegree of a node v is denoted δ−(v) and v
is called a reticulation if δ−(v)≥2. An edge (u,v) is called a
reticulation edge if its head v is a reticulation and is called a tree
edge otherwise. We assume without loss of generality that each
reticulation has outdegree at least 1. Consequently, each leaf has
indegree 1. When counting reticulations in a phylogenetic network,
we count reticulations with more than two incoming edges more
than once because, biologically, these reticulations represent several
reticulate evolutionary events. Therefore, we formally define the
reticulation number of a phylogenetic network N = (V ,E) as

∑

v∈V :δ−(v)>0

(δ−(v)−1)=|E|−|V |+1.

A directed acyclic graph is connected (also called ‘weakly
connected’) if there is an undirected path (ignoring edge

i125

 at C
W

I on F
ebruary 17, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

[09:34 17/5/2010 Bioinformatics-btq202.tex] Page: i126 i124–i131

L.van Iersel et al.

orientations) between each pair of nodes. A node (edge) of a directed
graph is called a cut-node (cut-edge) if its removal disconnects the
graph. A directed graph is biconnected if it contains no cut-nodes.
A biconnected subgraph B of a directed graph G is said to be a
biconnected component if there is no biconnected subgraph B′ �=B
of G that contains B.

A phylogenetic network is said to be a level-k network if each
biconnected component has reticulation number at most k.3 A
phylogenetic network is called binary if each node has either
indegree at most 1 and outdegree at most 2 or indegree at most 2
and outdegree at most 1. Note that the above definition of level
generalizes the original definition (Choy et al., 2005) for binary
networks. A level-k network is called a simple level-≤k network if
the head of each cut-edge is a leaf. A simple level-≤k network
is called a simple level-k network if its reticulation number is
precisely k. For example, Figure 2a is a simple level-4 network and
Figure 2b is a simple level-2 network. A phylogenetic tree (on X) is
a phylogenetic network (on X) without reticulations, i.e. a level-0
network.

Consider a set of taxa X . Proper subsets of X are called clusters.
We say that two clusters C1,C2 ⊂X are compatible if either C1 ∩
C2 =∅ or C1 ⊂C2 or C2 ⊂C1. Consider a set of clusters C. We say
that a set of taxa X ⊆X is separated (by C) if there exists a cluster C ∈
C that is incompatible with X . The incompatibility graph IG(C) of C
is the undirected graph (V ,E) that has node set V =C and edge set

E ={{C1,C2} | C1 and C2 are incompatible clusters in C}.

3 DECOMPOSING LEVEL-K NETWORKS
In this section, we describe the general outline of our algorithm
Cass. We show how the problem of determining a level-k network
can be decomposed into a set of smaller problems by examining
the incompatibility graph. Our algorithm will first construct a
simple level- ≤ k network for each connected component of the
incompatibility graph and subsequently merge these simple level-
≤k networks into a single level-k network on all taxa.

We first give a formal description of the algorithm, which is
illustrated by an example in Figure 3. After that we will explain
why we can use this approach.

Consider a set of taxa X and a set C of input clusters. We
assume that all singletons (sets {x} with x∈X) are clusters in C.
Our algorithm proceeds as follows.
Step 1. Find the non-trivial connected components C1,...,Cp of
the incompatibility graph IG(C). For each i∈{1,...,p}, let Ci

′ be
the result of collapsing unseparated sets of taxa as follows. Let
Xi =

⋃
C∈Ci

C. For each maximal subset X ⊂Xi that is not separated
by Ci, replace, in each cluster in Ci, the elements of X by a single
new taxon X, e.g. if X ={b,c} then a cluster {a,b,c,d} is modified
to {a,{b,c},d}.
Step 2. For each i∈{1,...,p}, construct a simple level-≤k
network Ni representing Ci

′.
Step 3. Let C∗ be the result of applying the following modifications
to C, for each i∈{1,...,p}: remove all clusters that are in Ci, add a
cluster Xi and add each maximal subset X ⊂Xi that is not separated
by Ci. Construct the unique phylogenetic tree T on X representing

3Note that to determine the reticulation number of a biconnected component
one only counts edges inside this biconnected component.

precisely those clusters in C∗. (Notice that each trivial connected
component of the incompatibility graph is also a cluster in C∗.)
Step 4. For each i∈{1,...,p}, replace in T the lowest common
ancestor vi of Xi by the simple level-≤k network Ni as follows.
Delete all edges leaving vi and merge T with Ni by identifying the
root of Ni with vi and identifying each leaf of Ni labeled X by the
lowest common ancestor of the leaves labeled X in T . Output the
resulting network.

Notice that Steps 1, 3 and 4 are similar to the corresponding steps
in algorithms for constructing galled trees (i.e. level-1 networks)
and galled networks (Huson and Klöpper, 2007; Huson et al., 2009;
D.H.Huson et al., submitted for publication). The reason why we
use the same set-up in our algorithm, is outlined by Theorem 1. It
shows that, when constructing a level-k network displaying a set
of clusters, we can restrict our attention to level-k networks that
satisfy the decomposition property (D.H.Huson et al., submitted for
publication), which intuitively says that the biconnected components
of the network correspond to the connected components of the
incompatibility graph. We now repeat the formal definition.

Since a cluster C ∈C can be represented by more than one edge
in a network N , an edge assignment ε is defined as a mapping
that chooses for each cluster C ∈C a single tree edge ε(C) of N
that represents C. A network N representing C is said to satisfy the
decomposition property w.r.t. C if there exists an edge assignment ε

such that:

• for any two clusters C1,C2 ∈C, the edges ε(C1) and ε(C2)
are contained in the same biconnected component of N if and
only if C1 and C2 lie in the same connected component of the
incompatibility graph IG(C).

Theorem 1. Let C be a set of clusters. If there exists a level-k network
representing C, then there also exists such a network satisfying the
decomposition property w.r.t. C.

Proof. Let C be a set of input clusters and N a level-k
network representing C. Let C1,...,Cp be the non-trivial connected
components of the incompatibility graph IG(C). For each i∈
{1,...,p}, we construct a simple level-≤k network Ni as follows.
Let Xi =

⋃
C∈Ci

C as before. For each maximal subset X ⊂Xi
(with |X|>1) that is not separated by Ci, replace in N an arbitrary
leaf labeled by an element of X by a leaf labeled X and remove
all other leaves labeled by elements of X. In addition, remove
all leaves with labels that are not in Xi. We tidy up the resulting
graph by repeatedly applying the following five steps until none
is applicable: (i) delete unlabeled nodes with outdegree 0; (ii)
suppress nodes with indegree and outdegree 1 (i.e. contract one
edge incident to the node); (iii) replace multiple edges by single
edges, (iv) remove the root if it has outdegree 1 and (v) contract
biconnected components that have only one outgoing edge. This
leads to a level-k network Ni. Let Ci

′ be defined as in Step 1 of the
algorithm. By its construction, Ni represents Ci

′. Furthermore, Ni
is a simple level-≤k network, because if it would contain a cut-
edge e whose head is not a leaf, then the set of taxa labeling leaves
reachable from e would not be separated by Ci

′ and would hence have
been collapsed. Finally, the networks N1,...,Np can be merged into
a level-k network representing C and satisfying the decomposition
property by executing Steps 3 and 4 of the algorithm. �

Intuitively, Theorem 1 tells us that whenever there exists a level-k
network N representing C, there also exists such a network N ′ whose

i126

 at C
W

I on F
ebruary 17, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

[09:34 17/5/2010 Bioinformatics-btq202.tex] Page: i127 i124–i131

Simpler phylogenetic networks from clusters

{a,b}

{b,c}

a

{d,f} {d,e}

{e,f}

{a,b,c,d,e,f,g}

{g,h,i,j}

{i,j} {h,i,j}

X1 = {a,b,c} X2 = {d,e,f} X3 = {a,b,c,d,e,f,g,h,i,j} X4 = {i,j} X5 = {h,i,j}

No unseparated
maximal subsets

No unseparated
maximal subsets

Unseparated maximal subsets
are {a,b,c,d,e,f} and {h,i,j}

N/A (only one
cluster)

N/A (only one
cluster)

b
c

d e

f

g
abcdef hij

a
b

c
d

e

f

g
h

i j

N/A N/A

d
e

f

g
h

i

a
b

c

j

g
h

i

c

j

a
b

d
e

f

g
h

i

c

j

b
d

e

f

a

Step 1

Step 2

Step 3
Build tree from clusters
X1...X5 and {a,b,c,d,e,f}

and {h,i,j} Step 4
1. Add back first
simple network

2. Add back
second simple

network

3. Add
back third

simple
network,

done.

Fig. 3. How the four-step decomposition algorithm of Cass (Section 3) constructs a level-2 network from the clusters {a,b}, {b,c}, {d,e}, {d,f }, {e,f },
{a,b,c,d,e,f ,g}, {g,h,i,j}, {i,j}, {h,i,j}. Section 4 describes how the simple networks in Step 2 are created.

biconnected components correspond to the connected components
of the incompatibility graph. Since N ′ has level k, each biconnected
component has level at most k. Hence, we can construct a
simple level-≤k network for each connected component of the
incompatibility graph. Subsequently, we can merge these simple
level-≤k networks into a level-k network representing C. This is
precisely what the set-up described above does.

Note finally that the statement obtained by replacing ‘level-k
network’ by ‘network with k reticulations’ in Theorem 1 does not
hold, as shown in Huson et al. (2009), based on Gusfield et al.
(2007a).

4 SIMPLE LEVEL-K NETWORKS
This section describes how one can construct a simple level-
k network representing a given set of clusters. We say that a
phylogenetic tree T is a strict subtree of a network N if T is a
subgraph of N and for each node v of T , except its root, it holds that
the in- and outdegree of v in T are equal to the in- and (respectively)
outdegree of v in N .

Informally, our method for constructing simple level-k networks
operates as follows. See Figure 4 for an example. Cass loops over
all taxa x. For each choice of x, Cass removes it from each cluster
and subsequently collapses all maximal ‘ST-sets’ (‘strict tree sets’,
defined below) of the resulting cluster set. The algorithm repeats this
step k times, after which all leaves will be collapsed into just two taxa
and the second phase of the algorithm starts. Cass creates a network
consisting of a root with two children, labeled by the only two taxa.
Then the algorithm ‘decollapses’, i.e. it replaces each leaf labeled
by an ST-set by a strict subtree. Subsequently, Cass adds a new leaf
below a new reticulation and labels it by the latest removed taxon.
Since it does not know where to create the new reticulation, Cass

tries adding the reticulation below each pair of edges. The algorithm
continues with a new decollapse step followed by hanging the next
leaf below a reticulation. These steps are also repeated k times. For
each constructed simple level-k network, Cass checks whether it
represents all input clusters. If it does, the algorithm outputs the
resulting network, after contracting any edges that connect two
reticulations.

The idea behind this strategy is as follows. Observe that any
simple level-k network N (k ≥1) contains a leaf whose parent is
a reticulation (since we assume that each reticulation has outdegree
at least 1). If we remove this leaf and reticulation from N , the
resulting network might contain one or more strict subtrees. To
reconstruct the network, we need to identify these strict subtrees
from the set of clusters. We will see below that each strict subtree
corresponds to an ST-set. Moreover, for the case k ≤2, we prove that
(without loss of generality) each maximal strict subtree corresponds
to a maximal ST-set. Cass collapses the maximal ST-sets because
it assumes that these correspond to the strict subtrees. Now observe
that collapsing each maximal strict subtree of the network leads to a
(not necessarily simple) level-(k−1) network, which again contains
a leaf whose parent is a reticulation. It follows that it is indeed
possible to repeat the described steps k times. Finally, Cass checks
if all clusters are represented and only outputs networks for which
this is the case.

Let us now formalize this algorithm. Given a set S ⊆X of taxa, we
use C\S to denote the result of removing all elements of S from each
cluster in C and we use C|S to denote C\(X \S) (the restriction of C
to S). We say that a set S �=X is an ST-set (strict tree set) w.r.t. C, if S is
not separated by C and any two clusters C1,C2 ∈C|S are compatible.
An ST-set S is maximal if there is no ST-set T with S �T . Informally,
the maximal ST-sets are the result of repeatedly collapsing pairs of
unseparated taxa for as long as possible.

i127

 at C
W

I on F
ebruary 17, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

[09:34 17/5/2010 Bioinformatics-btq202.tex] Page: i128 i124–i131

L.van Iersel et al.

{a,b,f,g}
{a,b,c,f,g}

{a,b,f}
{b,c,f}
{d,e}

{c,d,e}
{b,c,d,f}

{b,c}
{a,g}

{a,b,f,g}
{a,b,f}
{b,f}
{d,e}

{b,d,f}
{a,g}

Remove c {a,{b,f},g}
{a,{b,f}}
{{b,f}}
{d,e}

{{b,f},d}
{a,g}

Collapse {b,f}
{a,g}
{d,e}Remove {b,f}

Construct
a tree

a
g

d
e

Add {b,f}
below a

reticulationDecollapse {b,f}

a

g

f
b

a

g

d

c

f

b

eAdd c below a
reticulation

d
e

a

g

d
e

{b,f}

Fig. 4. Construction of a simple level-2 network by the Cass algorithm. The
edges e1,e2 that will be subdivided are colored red. Singleton clusters have
been omitted, as well as the last collapse step, for simplicity.

We use Collapse(C) to denote the result of collapsing each
maximal ST-set S into a single taxon S. More precisely, for
each cluster C ∈C and maximal ST-set S of C, we replace C
by C\S∪{{S}}. For example (omitting singleton clusters), if

C ={ {1,2}, {2,3,4}, {3,4} },
then {3,4} is the only non-singleton maximal ST-set and

Collapse(C)={ {1,2}, {2,{3,4}} }.
The set of taxa of a (collapsed) cluster set C is denoted X (C).
Thus, for the above example, X (Collapse(C))={1,2,{3,4}}. We
are now ready to give the pseudocode of Cass(k) in Algorithm 1.
The actual implementation is slightly more complex and much more
space efficient.

Figure 4 shows how the Cass(2) algorithm, for example,
constructs a simple level-2 network. We will now show that Cass(1)
and Cass(2) will indeed construct a simple level-1, respectively,
level-2 network whenever this is possible.

Lemma 1. Given a set of clusters C, such that IG(C) is connected
and any X �X is separated, Cass(1) and Cass(2) construct a simple
level-1, respectively, a simple level-2 network representing C, if such
a network exists.

Proof. The general idea of the proof is as follows. Details have
been omitted due to space constraints. Assume k ≤2. It is clear that
any (simple) level-k network N contains a reticulation r with a leaf,
say labeled x, as child. Let N \{x} denote the network obtained by
removing the reticulation r and the leaf labeled x from N . This
network might contain one or more strict subtrees. By the definition
of ST-set, the set of leaf labels of each maximal strict subtree
corresponds to an ST-set w.r.t. C\{x}. However, in general not each
such set needs to be a maximal ST-set. This is critical, because
the total number of ST-sets can be exponentially large. Therefore,
the main ingredient of our proof is the following. We show that
whenever there exists a simple level-k network representing C, there
exists a simple level-k network N ′ representing C such that the sets of
leaf-labels of the maximal strict subtrees of N ′ \{x} are the maximal
ST-sets w.r.t. C\{x}, with x the label of some leaf whose parent is a

Algorithm 1 Cass(k): constructing a simple level-k network from
clusters

1: input (C,X ,k,k′)
2: output Cass(C,X ,k,k′)
3: // in the initial call to the algorithm, k′ =k
4: N :=∅
5: if k′ =0 then
6: return the unique tree representing exactly those clusters in C

or return ∅ if no such tree exists
7: for x∈X ∪{δ} do
8: // δ is a dummy taxon not in X
9: remove leaf: C′ :=C\{x}

10: collapse: C′′ :=Collapse(C′)
11: recurse: N ′ := Cass(C′′,X (C′′),k,k′−1)
12: for each network N ′ in N ′ do
13: decollapse: replace each leaf of N ′ labeled by a maximal

ST-set S w.r.t. C′ by the tree on S representing exactly those
clusters in C′|S

14: for each pair of edges e1,e2 (not necessarily distinct) do
15: let N ′′ be a copy of N ′
16: add leaf below reticulation: create in N ′′ a

reticulation t, a leaf l labeled x and an edge from t to l;
17: then, for i=1,2, insert in N ′′ a node vi into ei and add

an edge from vi to t;
18: if N ′′ represents C then
19: save network: N :=N ∪{N ′′}
20: if k =k′ then
21: return any simple level-k network in N , after removing

each leaf labeled δ and contracting each edge connecting two
reticulations

22: else
23: return N

reticulation in N ′. This is clearly true for k =1. For k =2, we sketch
our proof below.

Let us first mention that the actual algorithm is slightly more
complicated than the pseudocode in Algorithm 1. First, when
Cass(k) constructs a tree, it adds a new ‘dummy’ root to this tree
and creates an edge from this dummy root to the old root. Such
a dummy root is removed before outputting a network. Second,
whenever the algorithm removes a dummy taxon δ (which we use
to model the situation when the previous leaf removal caused more
than one reticulation to disappear), it makes sure that it does not
collapse in the previous step.

Suppose there exists some level-2 network representing C. It can
be shown that any such network is simple and that there exists at least
one binary such network, say N . Since N is a binary simple level-2
network, there are only four possibilities for the structure of N (after
removing leaves), see van Iersel et al. (2009a). These structures are
called generators. In each case, N \{x} contains at most two maximal
strict subtrees that have more than one leaf. Furthermore, N \{x}
contains exactly one reticulation r′, below which hangs a strict
subtree Tr with set of leaf labels Xr (possibly, |Xr |=1 or |Xr |=0).

First, we assume that Xr is not a maximal ST-set w.r.t. C\{x}.
In that case it follows that there is some maximal ST-set X that
contains Xr and also contains at least one taxon labeling a leaf � that
is not reachable by a directed path from the reticulation of N \{x}.
We can replace � by a strict subtree on X that represents C|X. Such

i128

 at C
W

I on F
ebruary 17, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

[09:34 17/5/2010 Bioinformatics-btq202.tex] Page: i129 i124–i131

Simpler phylogenetic networks from clusters

a tree exists because X is an ST-set. We remove all leaves that label
elements of X and are not in this strict subtree. Since there are now no
leaves left below the reticulation, we can remove this reticulation as
well. It is easy to see that the resulting network is a tree representing
C\{x}. Moreover, we show that in each case a leaf labeled x can be
added below a new reticulation (possibly with indegree 3) in order
to obtain a network N ′ that represents C. Since N ′ contains just one
reticulation, it is clear that the maximal strict subtrees of N ′ \{x}
are the maximal ST-sets w.r.t. C\{x}. Cass(2) reconstructs such a
network with an indegree-3 reticulation by removing x, removing
a dummy taxon δ, constructing a tree, adding a leaf labeled δ below
a reticulation, adding a leaf labeled x below a reticulation, removing
the leaf labeled δ and contracting the (now redundant) edges between
the two reticulations. Note that this works because Cass(2) does not
collapse in this case.

It remains to consider the possibility that Xr is a maximal ST-set
w.r.t. C\{x}. In this case, we modify network N to N ′ in such a
way that also the other maximal ST-sets w.r.t. C\{x} appear as the
leaf-sets of strict subtrees in N ′ \{x}. We again use a case analysis
to show that this is always possible in such a way that the resulting
network N ′ represents C. �

Lemma 2. Cass runs in time O(|X |3k+2 ·|C|), if k is fixed.

Proof. Omitted due to space constraints. �

Theorem 2. Given a set of clusters C, Cass constructs in polynomial
time a level-2 network representing C, if such a network exists.

Proof. Follows from Lemmas 1 and 2 and Theorem 1. �

We conclude this section by showing that for each r ≥2,
there exists a set of clusters Cr such that any galled network
representing Cr needs at least r reticulations, while Cass constructs
a network with just two reticulations, which also represents Cr . This
follows from the following lemma.

Lemma 3. For each r ≥2, there exists a set Cr of clusters such that
there exists a network with two reticulations that represents Cr while
any galled network representing Cr contains at least r reticulations.

Proof. Omitted due to space constraints. �

5 PRACTICE
Our implementation of the Cass algorithm is available as part of the
Dendroscope program (Huson et al., 2007). To use Cass, first load
a set of trees into Dendroscope. Subsequently, run the algorithm
by choosing ‘options’ and ‘network consensus’. The program gives
you the option of entering a threshold percentage t. Only clusters
that appear in more than t percent of the input trees will be used as
input for Cass. Choose ‘minimal network’ to run the Cass algorithm
to construct a phylogenetic network representing all clusters that
appear in more than t percent of the input trees.

Cass computes a solution for each biconnected component
separately. If the computations for a certain biconnected component
take too long, you can choose to ‘skip’ the component, in which case
the program will quickly compute the cluster network (Huson and
Rupp, 2008) for this biconnected component, instead. Alternatively,
you can choose to construct a galled network, or to increase the
threshold percentage t. See van Iersel et al. (2009b) for a user guide

Table 1. Results of Cass compared with GalledNetwork for several
example cluster sets with |C| clusters and |X | taxa

Data GalledNetwork Cass

|C| |X | t k r t k r

30 5 0 s 6 6 1 s 4 4
62 6 0 s 8 8 7 s 5 5
126 7 0 s 10 10 28 s 6 6
254 8 6 s 12 12 4 m 3 s 7 7
42 10 0 s 4 4 6 s 4 4
38 11 0 s 7 7 14 s 5 5
61 11 0 s 6 6 47 s 5 5
77 22 0 s 9 9 36 s 3 3
75 30 0 s 11 11 5 s 2 2
89 31 0 s 16 16 27 m 32 s 4 4
180 51 0 s 11 11 30 s 2 2
193 57 0 s 1 4 1 s 1 4
270 76 0 s 16 16 4 m 52 s 2 2
404 122 1 s 2 2 21 m 10 s 2 2

135.8 31.9 1s 8.5 8.7 4 m 19 s 3.7 3.9

For each algorithm, the level k and reticulation number r of the output network are
given as well as the running time t in minutes (m) and seconds (s) on a 1.67 GHz 2 GB
laptop. The last row gives the average values.

for Cass and all datasets used for this article. See Huson et al. (2007)
for more information on using Dendroscope.

We have tested Cass on both practical and artificial data and
compared Cass with other programs. The results (using t =0) are
summarized in Table 1 and Figure 5. For Table 1, several example
datasets have been used, which have been selected in such a
way as to obtain a good variation in number of taxa, number of
clusters and network complexity. The first four datasets are the sets
containing all possible clusters on 5, 6, 7 and 8 taxa, respectively.
The other datasets have been constructed by taking the set of clusters
in (arbitrary) networks of increasing size and complexity. Mostly
networks with just one biconnected component have been used
because, for networks with more biconnected components, both
algorithms use the same method to decompose into biconnected
components and then both find a solution for each biconnected
component separately. For each dataset, we have constructed one
network using Cass, which we call the Cass network, and one
galled network using the algorithm in Huson et al. (2009). Two
conclusions can be drawn from the results. First, Cass uses more
time than the galled network algorithm. Nevertheless, the time
needed by Cass can still be considered acceptable for phylogenetic
analysis. Second, Cass constructs a much simpler network in
almost all cases. For three datasets, the Cass network and the
galled network have the same reticulation number and the same
level. For all other datasets, the Cass network has a significantly
smaller reticulation number, and also a lower level, than the galled
network.

Figure 5 summarizes the results of an application of Cass to
practical data. This dataset consists of six phylogenetic trees of
grasses of the Poaceae family, originally published by the Grass
Phylogeny Working Group (2001) and reanalyzed in Schmidt
(2003). The phylogenetic trees are based on sequences from six
different gene loci, ITS, ndhF, phyB, rbcL, rpoC and waxy, and

i129

 at C
W

I on F
ebruary 17, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

[09:34 17/5/2010 Bioinformatics-btq202.tex] Page: i130 i124–i131

L.van Iersel et al.

P
IR

N

H
yb

rid
In

te
rle

av
e

C
lu

st
er

 N
et

w
or

k

G
al

le
d

N
et

w
or

k

C
as

s

0

1

2

3

4

5

6

7

8

9(a)

P
IR

N

C
as

s

C
lu

st
er

 N
et

w
or

k

G
al

le
d

N
et

w
or

k

0

1

2

3

4

5

6

7

8

9(b)

P
IR

N

C
as

s

C
lu

st
er

 N
et

w
or

k

G
al

le
d

N
et

w
or

k

0

1

2

3

4

5

6

7

8

9(c)

Fig. 5. (a) The average number of reticulations used by the compared programs, ranging over all combinations of two gene trees from the six trees in the
Poaceae grass dataset, and restricted to those combinations for which all programs terminated within 5 min. (b) As in (a), but ranging over combinations
containing three or more gene trees. (c) As in (a), but ranging over all combinations of two or more trees.

contain 47, 65, 40, 37, 34 and 19 taxa, respectively. We have
compared the results of Cass not only with the galled network
and the cluster network algorithms, but also with the very recently
developed algorithms HybridInterleave (J.Collins et al., submitted
for publication) and PIRN (Y.Wu, submitted for publication).
HybridInterleave computes the minimum number of reticulations
required to combine two binary phylogenetic trees (on the same set
of taxa) into a phylogenetic network that displays both trees. PIRN
has the same objective as HybridInterleave but has the advantage
that it can accept more than two trees as input (which are still
required to be binary). On the other hand, HybridInterleave has
the advantage that it is guaranteed to find an optimal solution. For
this experiment, we compiled PIRN with the ILP (Integer Linear
Programming) solver CPLEX 10.2. We considered all possible
subsets of at least two of the six gene trees; 57 in total. For each
subset, we first restricted the trees to the taxa present in all trees in the
subset to make the input data compatible with HybridInterleave
and PIRN. Then, we executed each program for a maximum of
5 min on a 2.83 GHz quad-core PC with 8 GB RAM and recorded
the best solution it could find in that time frame. The full results
are available in Table 2 in the Supplementary Material. Results for
HybridInterleave (which could only be applied to pairs of trees)
differ from the results reported in (J.Collins et al., submitted for
publication) because there trees with a different rooting were used.
Our results show that Cass always found a solution (within 5 min)
when the minimum level was at most 4, and sometimes when the
minimum level was 5 or 6. We also see that, in all these cases, no
program found a solution using fewer reticulations than Cass.

To obtain each of the graphs in Figure 5, we averaged over
those subsets where all the programs had terminated within 5 min
(which was the majority). Several conclusions can be drawn from
these graphs. The main conclusion is that Cass on average required
fewer reticulations than each of the other programs. That Cass uses
fewer reticulations than PIRN can be explained by the fact that
PIRN (as well as HybridInterleave) requires the output network
to display all input trees. The networks constructed by Cass do not
necessarily display the input trees, but still represent all clusters from
the trees, and in general use fewer reticulations to do so. Figure 5a is
noteworthy in this regard. It turns out that, when restricted to subsets
of exactly two trees, Cass, PIRN and HybridInterleave always
achieved the same optimum. This turns out not to be coincidence,
but a mathematical consequence of extracting clusters from exactly
two binary trees on the same taxa set (L.J.J.van Iersel and S.M.Kelk,

in preparation). The advantages of Cass clearly become most visible
when larger subsets of trees are used.

In terms of running time, PIRN and HybridInterleave are in
general faster than Cass, but Cass has the significant flexibility
that it is not restricted to binary (i.e. fully resolved) input trees
and is not restricted to trees on the same taxa set. Compared
with HybridInterleave, Cass also has the advantage that it is
not restricted to two input trees and that it constructs an actual
network rather than to only report the number of reticulations.
Finally, because Cass is not restricted to binary trees, the user is
free to choose only well-supported clusters from the input trees.
Figure 6 is a nice example of this: this is the output of Cass when
given all clusters that were in at least three of the six gene trees
(i.e. t =34%), without having to first restrict to those taxa common
to all six trees (in this case, only four taxa were common to all six
input trees). This example also illustrates that, when there exists a
solution with a low level, Cass can handle large numbers of taxa
and reticulations.

6 DISCUSSION
We have introduced the Cass algorithm, which can be used to
combine any set of clusters into a phylogenetic network representing
those clusters. We have shown that the algorithm performs well on
practical data. It provides a useful addition to existing software,
because it usually constructs a simpler network representing the
same set of input clusters. Furthermore, we have shown that Cass
provides a polynomial-time algorithm for deciding whether a level-
2 phylogenetic network exists that represents a given set of clusters.
This algorithm is more useful in practice than algorithms for similar
problems that take triplets as input (Jansson and Sung, 2006; Jansson
et al., 2006; To and Habib, 2009; van Iersel and Kelk, 2009; van
Iersel et al., 2009a), because clusters are more biologically relevant
than triplets and because the latter algorithms need at least one triplet
for each combination of three taxa as input, while Cass can be
used for any set of input clusters. Furthermore, Cass is also not
restricted to two input trees, as the algorithms in Bordewich et al.
(2007); J.Collins et al., (submitted for publication); Linz and Semple
(2009) and not to fully resolved trees on identical taxa sets, as the
algorithms in Bordewich et al. (2007), J.Collins et al. (submitted
for publication), Y.Wu et al. (submitted for publication). Finally, we
remark that Cass can also be used when one or more multi-labeled
trees are given as input. In this case, Dendroscope first computes

i130

 at C
W

I on F
ebruary 17, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

[09:34 17/5/2010 Bioinformatics-btq202.tex] Page: i131 i124–i131

Simpler phylogenetic networks from clusters

Fig. 6. Level-4 network with 66 taxa and 15 reticulations constructed by
Cass for the six gene trees of the Poaceae grass dataset, within 5 s. Clusters
were used that were present in at least three of the six gene trees. For the same
input GalledNetwork produced a level-5 network with 17 reticulations,
and the cluster network algorithm produced a level-11 network with 32
reticulations.

all clusters in the multi-labeled tree(s) and subsequently uses Cass
to find a phylogenetic network representing these clusters. Several
theoretical problems remain open. First of all, does Cass always
construct a minimum-level network, even if this minimum is three
or more? Second, what is the complexity of constructing a minimum
level network, if the minimum level k is not fixed but part of the
input? Is this problem FPT when parameterized by k? Finally, it
would be interesting to design an algorithm that finds a network
representing a set of input clusters that has a minimum reticulation
number. So far, not even a non-trivial exponential-time algorithm is
known for this problem.

ACKNOWLEDGEMENTS
We thank Mike Steel for organizing the Cass workshop in the
Cass Field Station in February 2009, where we started this work.

We thank Yufeng Wu for providing us with the source code for his
PIRN program.

Funding: Allan Wilson Centre for Molecular Ecology and Evolution
(to L.V.I.); Computational Life Sciences grant of The Netherlands
Organisation for Scientific Research (NWO to S.K.); Regula
Rupp by the Deutsche Forschungsgemeinschaft (PhyloNet project
to S.K.).

Conflict of Interest: none declared.

REFERENCES
Bordewich,M. and Semple,C. (2007) Computing the minimum number of hybridization

events for a consistent evolutionary history. Discrete Appl. Math., 155, 914–928.
Bordewich,M. et al. (2007) A reduction algorithm for computing the hybridization

number of two trees. Evol. Bioinform., 3, 86–98.
Choy,C. et al. (2005) Computing the maximum agreement of phylogenetic networks.

Theor. Comput. Sci., 335, 93–107.
Gambette,P. (2009) Who’s who in phylogenetic networks, 2009. Available at http://

www.lirmm.fr/∼gambette/PhylogeneticNetworks/ (last accessed date April 24,
2010).

Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of
the grasses (Poaceae). Ann. Mo. Bot. Gard., 88, 373–457.

Gusfield,D. et al. (2007a) A decomposition theory for phylogenetic networks and
incompatible characters. J. Comput. Biol., 14, 1247–1272.

Gusfield,D. et al. (2007b) An efficiently computed lower bound on the number of
recombinations in phylogenetic networks: theory and empirical study. Discrete Appl.
Math., 155, 806–830.

Huson,D.H. and Klöpper,T.H. (2007) Beyond galled trees - decomposition and
computation of galled networks. In Research in Computational Molecular Biology
(RECOMB), Vol. 4453 of Lecture Notes in Computer Science, Springer, Berlin,
pp. 221–225.

Huson,D.H. and Rupp,R. (2008) Summarizing multiple gene trees using cluster
networks. In Algorithms in Bioinformatics (WABI), Vol. 5251 of Lecture Notes
in Bioinformatics, Springer, Berlin, pp. 296–305.

Huson,D.H. et al. (2007) Dendroscope: an interactive viewer for large phylogenetic
trees. BMC Bioinformatics, 8, 460.

Huson,D.H. et al. (2009) Computing galled networks from real data. Bioinformatics,
25, i85–i93.

Huynh,T. et al. (2005) Constructing a smallest refining galled phylogenetic network. In
Research in Computational Molecular Biology (RECOMB), Vol. 3500 of Lecture
Notes in Bioinformatics, Springer, Berlin, pp. 265–280.

Jansson,J. and Sung,W.-K. (2006) Inferring a level-1 phylogenetic network from a dense
set of rooted triplets. Theor. Comp. Sci., 363, 60–68.

Jansson,J. et al. (2006) Algorithms for combining rooted triplets into a galled
phylogenetic network. SIAM J. Comput., 35, 1098–1121.

Linz,S. and Semple,C. (2009) Hybridisation in nonbinary trees. IEEE/ACM Trans.
Comput. Biol. Bioinform., 6, 30–45.

Nakleh,L. (2009) Evolutionary phylogenetic networks: models and issues. In Heath,L.
and Ramakrishnan,N. (eds), The Problem Solving Handbook for Computational
Biology and Bionformatics, Springer.

Schmidt,H.A. (2003) Phylogenetic trees from large datasets. PhD Thesis, Heinrich-
Heine-Universität, Düsseldorf.

Semple,C. (2007) Hybridization networks. In Gascuel,O. and Steel,M. (eds),
Reconstructing Evolution - New Mathematical and Computational Advances,
Oxford University Press, pp. 277–314.

To,T.-H. and Habib,M. (2009) Level-k phylogenetic networks are constructable from
a dense triplet set in polynomial time. In Combinatorial Pattern Matching (CPM),
Vol. 5577 of Lecture Notes in Computer Science, pp. 275–288.

van Iersel,L.J.J. and Kelk,S.M. (2009) Constructing the simplest possible phylogenetic
network from triplets. Algorithmica [Epub ahead of print, doi:10.1007/s00453-009-
9333-0, July 7, 2009].

van Iersel,L.J.J. et al. (2009a) Constructing level-2 phylogenetic networks from triplets.
IEEE/ACM Trans. Comput. Biol. Bioinform., 6, 667–681.

van Iersel,L.J.J. et al. (2009b) Cass: Combining phylogenetic trees into a phylogenetic
network, Available at http://sites.google.com/site/cassalgorithm/ (last accessed date
April 24, 2010).

i131

 at C
W

I on F
ebruary 17, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

http://
http://sites.google.com/site/cassalgorithm/
http://bioinformatics.oxfordjournals.org/

